

HDG-003-1271003

Seat No.

M. Sc. (ECI) (Sem. I) (CBCS) Examination

November / December - 2017

Fundamentals of Digital Electronics: Paper - III

Faculty Code: 003 Subject Code: 1271003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

1 Answer the following: (any 7 out of 10)

14

- (a) Classify Digital logic family based on fabrication.
- (b) Find the FAN OUT of digital gate with following specifications.

$$I_{OH} = 0.4 \ mA$$

$$I_{IH} = 0.02 \ mA$$

$$I_{OL} = 8 mA$$

$$I_{IL} = 0.4 \ mA$$

(c) Write the name of Boolean theorem

(1)
$$\overline{\overline{X}} = X$$

$$(2) \overline{X+Y} = \overline{X-Y}$$

- (d) Convert $(AB6.29)_{16}$ into Octal number system.
- (e) Find Binary equivalent of $(79.30)_{10}$.
- (f) Convert $(58DE)_{16}$ into equivalent Gray code.
- (g) Convert $(156.20)_8$ into Decimal number system.
- (h) Test the Hamming code sequence 1111011.

 Correct it, if there is any error.
- (i) Explain 2 input AND gate with its symbols and truth table.
- (j) Do using 2's complement method.

$$(+18)_{10} - (-10)_{10}$$

- 2 Answer the following: (any 2 out of 3 from, (a), (b) and (c): 14
 - (a) Explain NOR gate as a Universal gate. 5
 - (b) List the advantages of Digital Integrated Circuits 5 (ICs).
 - (c) Write the following forms for the Boolean expression.

$$f(A, B, C) = A\overline{B} + \overline{B} \overline{C} + AC$$

- (1) Dual form
- (2) Complemented form
- (3) Canonical form
- (d) Compulsory question:

Explain OR gate and NOT with their symbols and truth tables.

- **3** Answer the following :
 - (a) Design 2 input Ex-OR gate using only 2 input NAND gates. Explain in detail.
 - (b) Explain Minterms and Maxterms for following Boolean expression.

$$f(A, B, C, D) = \pi (0, 4, 5, 11, 13, 15)$$

OR

- **3** Answer the following:
 - (a) Make a seven segment display for Football match which shows "FIFA 2018" Generate code for each display.(Consider common cathode type display)
 - (b) Multiply $(14)_{10}$ and $(12)_{10}$ using 4 bit repeated add and shift right algorithm. Explain each step in detail.
- 4 Answer the following:

14

4

14

14

(a) Simplify following Boolean expression using K-map.

$$f(A, B, C, D) = \sum (0, 3, 4, 7, 8, 11, 12, 15)$$

Draw the logic circuit.

- (b) Perform following in 8421 BCD using Ex-3 code.
 - (1) 136 + 180
 - $(2) \quad 78 59$

5 Answer the following: (any 2 out of 4)

- 14
- (1) Explain Half adder circuit with truth table, expression and Logical circuit.
- (2) Explain DeMorgan's theorem in detail. Write formulas, symbols and example.
- (3) What will be the output of a given digital circuit? Explain output for each gate.

(4) For following logic circuit, Identify the expression of the output and write the function of this circuit.

